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Abstract. In this paper we present a method for calculatingεg, thegeneralization errorof two-
layered networks.εg is the fraction of the input space for which two networks yield different
answers, therefore it is a good index to measure the similarity between them. The method
presented here is an extension of work reported previously. It is applied here to the case of a
single-layer perceptron (which can be regarded as a particular two-layered perceptron) that tries
to imitate a two-layered network. The particular realizations of such a two-layered network that
are analysed here are the ‘parity machine’, the ‘and machine’ and the ‘committee machine’. We
have also compared the input–output mapping of a committee and a parity machine.

1. Introduction

Feedforward neural networks can be viewed as input–output devices whose parameters are
tuned to perform a given function. An index of similarity between two such mappings is
the generalization error, i.e. the fraction of the input space for which the corresponding
function value is different.

The generalization error,εg, as a function of the number of examples was studied in
the framework of learning theory [1]. Different asymptotic behaviours were found for the
cases in which the rule can or cannot be implemented [2]. Numerical simulations were
also employed to understand how networks generalize when they ‘try’ to implement an
unlearnable task [3].

There are many situations where it can be useful to calculate the similarity of the input–
output map of two networks. For instance, one may want to evaluate the generalization
ability of a learning algorithm. The method presented here could be applied if for a given
learning algorithm it were possible to calculate the overlap between the weights of the
‘teacher’ and ‘student’ (as in the case of [4]).

More recently a method to calculateεg when the student and teacher aretwo-layered
perceptronshaving the same [5] and different [6] numbers of hidden units was introduced.
In this caseεg is a function of the two network parameters. Expressions forεg were provided
in the thermodynamic limit, i.e. when the number of inputs is very large.

In this work we extend the method mentioned above in two directions. First, it is
formulated in such a way that any mapping from the hidden units to the output is allowed.
Second, a series expansion that enables us to calculateεg to any degree of precision replaces
the multi-dimensional Gaussian integrals, in terms of which the results were previously given
[5, 6].
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This new method is equivalent to the limit of zero temperature and infinite number of
examples in the framework of the replica calculations. Therefore this technique can be
useful to check symmetry or scaling assumptions for the order parameters. In particular,
we compare with the case of a perceptron learning from a committee machine with three
hidden units [7] and when the number of hidden units goes to infinity [8, 9].

This method is applied now to the case of asingle-layer perceptrontrying to learn the
function realized by atwo-layered network. In most of the cases this is an unlearnable task
for the perceptron. We obtain expressions for the general case and also for some specific
realizations of the two-layered network, like theparity, and, andcommittee machines. In
particular, we are able to find the weights of the perceptron that minimizeεg. Some of our
results can be easily explained by geometrical arguments. We found that when the teacher
is a committee machine of any number of hidden units, there exists a perceptron that is able
to give the correct answer in almost 80% of the cases.

We have also compared the set of Boolean functions associated with committee and
parity machines with tree-like architecture. We found that the intersection of the set of
Boolean functions that can be implemented by a committee machine and the set of Boolean
functions that can be implemented by a parity machine is empty.

The basic definitions are given in section 2. The method for calculatingεg and a brief
derivation of it is presented in section 3. In sections 4 and 5 we apply this technique to the
cases mentioned above.

2. Definitions

Throughout this paper we will be concerned with feedforward networks composed of binary
units, with N inputs and one output. Each input is described by anN -vector x with
componentsxi ∈ {−1, 1}, 1 6 i 6 N .

The simplest feedforward network is thesingle-layer perceptron(SLP) whose output is
given by:

yp (x) = sign(W · x) (1)

whereW ∈ <N is called theweight vector; Wi denotes the strength of the connection of
the ith input unit to the output.

We consider spherical perceptrons, i.e.W is normalized by requiringW · W = 1.
The SLP implements only the class of so-calledlinearly separablefunctions. That is, the
input–output map (1) implemented by theSLP divides the input space into two regions,
corresponding to the two sides of the hyperplane that passes through the origin and is
normal toW .

Two-layered networks(2LN) with one additional layer of hidden units have higher
computational power than a perceptron. A2LN is completely defined by the specification
of the number of hidden units,K; the weight vectorsWl ∈ <N , 1 6 l 6 K and by the
Boolean function that maps the hidden layer to the output. Each hidden unit is connected
to the inputs by its weight vectorWl , performing the mapping

σl = sign(Wl · x) for 1 6 l 6 K .

The hidden units can be regarded as outputs of a single-layer perceptron. The state
taken by the hidden layer in response to an input is called theinternal representation
(IR) corresponding to this input. The output of the network is determined by theIR:

y2LN(x) = B (σ)
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whereB: {−1, 1}K −→ {−1, 1} denotes the Boolean function that maps the hidden layer
to the output unit. For instance theparity machine(PM) is a 2LN where the mapping from
the hidden units to the output is

B (σ) =
K∏

l=1

σl .

Another 2LN that was widely studied is thecommittee machine† (CM) whose output is
determined by the votes of each of its hidden units; that is, the Boolean function is
implemented by aSLP whose weight vector components have the same (positive) value,

B (σ) = sign

( K∑
l=1

σl

)
.

The third2LN that we consider in this work is theand machine(AM). In this case the output
is +1 if and only if all the hidden units are equal to+1, otherwise the output is−1.

A particular case of a2LN is theruler machine(RM) where the output is determined by
a singlehidden unit. Clearly its computational capabilities are exactly the same as theSLP.
The Boolean functiony2LN : {−1, 1}N → {−1, 1} is the input–output mapof the 2LN.

3. The generalization error

The generalization error,εg, is an index of similarity of the input–output map implemented
by two networks.εg is the fraction of the input space for which two networks give different
outputs.

Let us now consider two2LNs, N1 and N2, both with N inputs and, respectively,K1

andK2 hidden units. UseW(1)
li andW

(2)
li to denote the weights ofN1 andN2 respectively.

Similarly, useB1 andB2 with the same convention.
The generalization error between them is given by

εg (N1, N2) = 〈〈2 (−y1y2)〉〉 (2)

where 〈〈· · ·〉〉 = 1
2N

∑
x1=−1,1 . . .

∑
xN=−1,1 . . . indicates the average over input space, and

2 (·) denotes the Heaviside step function.εg (N1, N2) can be expressed in terms of theIR

as follows:

εg (N1, N2) =
2K1∑

µ1=1

2K2∑
µ2=1

2 (−B1 (σµ1) B2 (σµ2)) P (σµ1, σµ2) (3)

where{σµa }16µa62Ka is the set of possibleIR for Ka hidden units,a = 1, 2. P (σµ1, σµ2) is
the fraction of input space for which the two2LNs get theIRs σµ1 andσµ2 simultaneously
(i.e. in response to the same input):

P (σµ1, σµ2) =
〈〈

K1∏
l=1

2
(
W (1)

l · xσ
µ1
l

) K2∏
m=1

2
(
W (2)

m · xσ
µ2
l

)〉〉
(4)

P (σµ1, σµ2) can be interpreted as the probability of getting theIRs σµ1 and σµ2 if an
unknown vectorx is fed as the input ofN1 andN2, respectively.

Introducing the integral expression of the2-function [5, 6] in equation (4), we obtain
at leading order in 1/N

P
(
σ(1), σ(2)

) = 1√
(2π)K1+K2 det(R)

∫ ∞

0

K1+K2∏
l=1

dhl exp

[
−1

2

K1+K2∑
m,n=1

hm

(
R−1

)
mn

hn

]
(5)

† Also calledmajority machine.
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whereR is the (symmetric) correlation matrix given by

R =
[

R11 R12(
R12

)T
R22

]
(6)

the elements ofRab (a, b = 1, 2) are the correlations between the weight vectors ofNa and
Nb

Rab
lm = σ

(a)
l W (a)

l · W (b)
m σ (b)

m for 1 6 l 6 Ka 1 6 m 6 Kb a, b = 1, 2 .

From expressions (3), (4) and (5) we observe that in thethermodynamic limit(N → ∞) the
generalization error is determined by the overlaps{Rlm}K1+K2

l,m=1 and the Boolean functionsB1

andB2. The remaining details of the networks are corrections of order1
N

to this result.
Equations (3) and (5) provide a constructive method to evaluate the generalization

function for any pair of2LNs. The generalization error is simply the sum of the probabilities
P (σµ1, σµ2) over the pairs(σµ1, σµ2) for which N1 andN2 yield different answers. In the
case thatN1 andN2 are2LNs with tree-like architecture, a simple expression forP (σµ1, σµ2)

is obtained, because by definition the elements of the correlation matrix (6) are of the form

Rab
lm = δlmδab + δlm (1 − δab) W (1)

l · W (2)
l for 1 6 l, m 6 K a, b = 1, 2

whereK is the number of hidden units. Integrating (5) we obtain

P (σµ1, σµ2) = 1

22K

K∏
l=1

[
1 + σ

µ1
l σ

µ2
l (1 − 2εl)

]
(7)

with

εl = 1

π
arccosR12

ll . (8)

The factorization of (5) is a consequence of the fact that the input seen by each hidden
unit of the2LP is decoupled from the others, hence each hidden unit acts as an independent
perceptron.εl is no more than the generalization error of thelth hidden unit ofN1 with
respect to thelth hidden unit ofN2.

In general, when the integration is not possible, the expression forP (σµ1, σµ2) can
be evaluated to any degree of precision using Kendall’s expansion [10, 11]. This is an
expansion for the integral (5) in powers of the matrix elements 0< |Rlm| 6 1, defined as
follows. Assign an integernlm > 0 to every pair of indices 16 l, m 6 K1 + K2. Denote
by {n} a set of these integers. Further, denote

nl =
l−1∑
m=1

nml +
K1+K2∑
m=l+1

nlm

n =
K1+K2∑

l=1

nl .

(9)

Kendall’s expansion is a sum over all possible sets{n}:

P (σ1, σ2) =
∑
{n}

(−1)n

[∏
l<m

Rlm
nlm

nlm!

]
K1+K2∏

l=1

Gnl
. (10)

The first product is over all pairsl, m with l < m; the argument of the second product
is given by

Gn =


1
2 if n = 0

(2m − 1)!!√
2π i

if n = 2m + 1 (m = 0, 1, 2, . . .)

0 if n = 2m (m = 1, 2, 3, . . .)

(11)
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where(2m − 1)!! = ∏m
l=1(2l − 1).

4. A perceptron learning from a two-layered network

In this section we use the proposed method for the case where one of the networks is a
single-layer perceptron with weight vectorWP and the second a2LN of K hidden units. We
find expressions for a general2LN as well as for some particular realizations of it like the
PM, AM andCM.

In order to simplify the problem we assume that the first layer weights of the2LN are
uncorrelated [8, 9], i.e.Wl ·Wm = δlm. This can be considered a ‘typical case’ in the sense
that there is a big probability of gettingK (almost) orthogonal weight vectors if they are
chosen at random in the largeN limit. The 2LNs with tree-like architecture, also known as
non-overlapping receptive fields2LN, are a particular case whose weights satisfy exactly the
orthonormal condition.

The overlap ofWl with the perceptron weight vector is designatedρl

ρl = Wl · WP .

Denoting byσ the IR of the 2LN and byyP the output of the perceptron, and introducing

zl = yP σlρl

the correlation matrix (6) takes the form

R =



1 0 0 · · · · · · 0 z1

0 1 0 · · · · · · 0 z2

0 0 1 · · · · · · 0 z3
...

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

...

0 0 0 · · · · · · 1 zK

z1 z2 z3 · · · · · · zK 1


. (12)

We have to take into account only the non-diagonal elements that are different from
zero in expansion (10). Therefore the set{n} is composed, in this case, only by elements
of the formnl,K+1, i.e.

{n} = {ml}Kl=1 with ml = nl,K+1 .

Equation (9) becomes

nl =
{

ml if l 6= K + 1∑K
l=1 ml if l = K + 1

n = 2
K∑

l=1

ml

and expansion (10) can be expressed as

P (σµ1, σµ2) =
∞∑

m1,...,mK=0

G6ml

K∏
l=1

z
ml

l Gml

ml !
.

Only terms with an odd number ofz raised to an odd power can appear in this expansion
becauseGn 6= 0 only if n is odd or zero. Hence expansion (10) can be written as

2KP (yP, σ
µ) = 1

2 +
K∑

l=1

f1 (zl) +
∑

l1<l2<l3

f3
(
zl1, zl2, zl3

)+ · · · +
∑

l1<···<lK∗
fK∗

(
zl1, . . . , zlK∗

)
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where

f2m+1 (z1, . . . , z2m+1) = 1

π

(−2

π

)m ∞∑
t1,...,t2m+1=0

(
2

∑
ti + 2m − 1

)
!!

2m+1∏
i=1

z
2ti+1
i (2ti − 1)!!

(2ti + 1)!

with K∗ = K if K is odd andK∗ = K − 1 if K is even. In particular, it can be shown that
f1(z) is just the series expansion of1

π
arcsin(z). Using

f2m+1
(
yPσl1ρl1, . . . , yPσl2m+1ρl2m+1

) = yP

[
2m+1∏
i=1

σli

]
f2m+1

(
ρl1, . . . , ρl2m+1

)
the generalization error becomes

εg = 1
2 −

K∑
l1=1

Cl1f1 (ρl) −
∑

l1<l2<l3

Cl1l2l3f3
(
ρl1, ρl2, ρl3

) − · · ·

· · · −
∑

l1<...<lK∗
Cl1...lK fK∗

(
ρl1, . . . , ρlK∗

)
(13)

whereCl1... lm is the correlation of hidden unitsl1 . . . lm with the output

Cl1... lm = 1

2K

2K∑
µ=1

B (σµ)

m∏
i=1

σ
µ

li
(14)

and{σµ}2K

µ=1 is the set of allIRs for K hidden units.
It is interesting to observe that (13) is basically a sum of products, each of the form

Cl1...lmfm where the functionsfm depend only on the2LN weight vectors and the perceptron
weight vector, while the correlation coefficientsCm are completely determined by the
Boolean function that maps the hidden layer to the output. In some cases, as we will
see below, it is possible to draw many conclusions from the correlation coefficients without
calculating thefm explicitly.

In many cases all hidden units play equivalent roles in the hidden layer to output map
B (like the PM, AM and CM). Hence the correlation depends only on the number of hidden
units and not on the particular ones chosen. This motivates the following definition. We
say that a2LN is symmetricif

Cl1...lm = Ĉm

for all l1 < · · · < lm with m = 1, 3, . . . , K∗.
Let us now evaluate (14) for some2LN. In the case of thePM it is easy to show that

Ĉl =
{

1 if l = K

0 otherwise.
(15)

Therefore the generalization error of any perceptron that tries to imitate aPM of an even
number of hidden units is always12 because only the correlations of odd numbers of hidden
units enter in (13). This result was expected because for everyPM with an even number
of hidden units we have thatyPM (x) = yPM (−x) while for every SLP we know that
yP (x) = −yP (−x) for any inputx. For a PM with an odd number of hidden units it is
necessary to calculate only one term in the expansion (13), i.e. it is of the formεg = 1

2 −fK .
Evaluation of (14) in the case of theAM is also immediate:

Ĉl = 1

2K−1
.
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In the case of theCM we get, after some algebra and assuming thatK is odd, that

Ĉ2m+1 = (−1)m

2K−1

m∑
n=0

[
(−1)n

(
2m + 1

n + m + 1

) n∑
u=−n

(
K − 2m − 1
u − m + K−1

2

)]
. (16)

When the2LN is a ruler machine, we can assume without loss of generality that its
output is determined by the hidden unit 1. In this case we have that all the correlation
coefficients (14) vanish exceptC1 = 1. Therefore (13) yieldsεg = 1

π
arccos(ρ1), which is

the well known expression for the generalization error between twoSLPs.

4.1. The optimal perceptron

We turn now to address the issue of finding the minimal generalization error of anSLP that
tries to imitate a symmetric2LN. We consider first the general case and then we analyse the
cases where the2LN is a PM, CM andAM.

We have to minimizeεg with respect to{ρl}Kl=1 under the constraint
∑K

l=1 ρ2
l 6 1. This

can be done by minimizing

h = εg + λ

(
1 − ρ2

⊥ −
K∑

l=1

ρ2
l

)
with respect to{ρl}Kl=1; ρ⊥, the projection ofWP on the subspace orthonormal to the2LN

weight vectors and the Lagrange multiplierλ. The condition∂h/∂ρ⊥ = 0 implies that
ρ⊥ = 0, which means that the weight vector of the optimal perceptron must be contained
in the subspace spanned by{Wl}Kl=1; i.e.

K∑
l=1

ρ2
l = 1 . (17)

Finally, taking the derivative with respect toρl leads to∑
m

Ĉm

∑
l1,...,lm

∂fm

∂ρl

(
ρl1, . . . , ρlm

) = 2λρl for 1 6 l 6 K∗ . (18)

Equations (17) and (18) are valid for any set of overlaps,ρl , except for the cases where
the perceptron coincides with one of the first layer perceptrons of the teacher, because the
norm of the gradient ofεg diverges. Thus, in order to obtain the minimum ofεg, not only
must εg be evaluated at all solutions of (17) and (18) but also at these points. In the case
where the2LN is a CM, PM andAM the minima can be found explicitly.

4.1.1. Committee machine.Let consider the particular realization of a2LN, where the
mapping from the hidden layer of units to the output unit is made by aCM. Since the
correlationsĈm have the property that sign[Ĉmfm(ρl1, . . . , ρlm)] = sign

[∏m
i=1 ρli

]
we have

that the overlaps that lead to the minimum of the generalization errorεg must be positive.
Moreover, if we consider∂Cmfm/∂ρl as a function ofρl we observe that it is an even
function and it is a monotonic function forρl > 0. Hence the right-hand side of equation (18)
is an even function ofρl and monotonic increasing forρl > 0. On the other hand the left-
hand side of equation (18) is a monotonic odd function ofρl . Therefore each of theK
equations of (18) withl = 1, . . . , K possesses at most two solutions. By the symmetry of
the problem we have that if

(
ρ?

1, . . . , ρ
?
K

)
is a solution, then any permutation of it will still

be a solution. So, the solutions of the set of equations (18) have the particularity that each
of the overlapsρ?

l , can take at most two values, sayα > 0 andβ > 0. The constraint (17)
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Figure 1. Minimal generalization error of a perceptron that tries to imitate different two-layered
networks. The minimalgeneralization error, εg is presented for the following realizations of
the 2LN; the committee machinein (a), the and machinein (b), and theparity machinein (c).
In (a) and(c) we consider only odd numbers of hidden units,K. The open circles indicate the
value ofεg for the differentK. The dotted lines indicate the value of limK→∞ εmin

g (K) in each
case.

imposes a new restriction; the number ofα should be fixed. In addition, it can be easily
checked that

ρl = 1√
K

for 1 6 l 6 K

satisfies equations (17) and (18) and therefore the solution is unique. Thus we have found
that the optimal perceptron is the one that is equidistant from all the perceptrons composing
the first layer weights of theCM:

εg = 1
2 −

∑
l=1,3,...,K∗

Ĉlfl (19)

where

f2m+1 = (−1)m

π
√

K

[
2

πK

]m ∞∑
M=0

[2(M + m) − 1]!!

KM

∑
{si }2m+1

i=1∑
si=M

2m+1∏
i=1

[(2si)!(2si + 1)]−1 (20)

and the correlationŝCl are given by (16). The minimal generalization error obtained for
different values ofK is presented in figure 1(a).

Let us now consider the case of a large number of hidden units; we assume that
1 � K � N . Expanding expression (20) at the leading term in 1/

√
K, we obtain

f2m+1 = (−1)m

π
√

K

[
2

πK

]m

(2m − 1)!! . (21)
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The correlation coefficients (16) of theCM in the largeK limit become

Ĉ2m+1 =
√

2

πK

(−1)m

Km
(2m − 1)!! .

Inserting the last two equations into (19) and using Stirling’s approximation we get that the
minimal generalization error for the optimal perceptron that learns from aCM of infinite
hidden units is

εg = 1

2
−

√
2

π3

∑
n

(
2n

n

)
(2π)−n

(2n + 1)
= arccos

(√
π

2

)
∼= 0.206.

This value is the same† as that of the minimum generalization error obtained in [8, 9] for a
CM machine learning from anotherCM in the permutation symmetric phase where theCM

effectively behaves as a perceptron. Since the treatment of this work is equivalent to the
case of an infinite number of examples and zero temperature of [8, 9], we conclude that in
the limit of a high number of examples, there is no permutation symmetry breaking. In
addition, for the case of a perceptron learning from aCM of three hidden units, our result not
only agrees with the limit of a high number of examples obtained in [7], but also justifies
the permutation symmetry of the order parameter assumed in that work.

4.1.2. And machine and parity machine.In the case when the teacher is a parity machine
of odd number of hidden units the generalization (13) error is reduced to only two
terms; εg = 1

2 − fK(ρ1, ρ2, . . . , ρK) because there is only one non-vanishing correlation
coefficient (15). Using similar arguments to those used in the previous section we obtain
that the optimal perceptron that learns from aPM of 2m + 1 hidden units must satisfy: (a)
|ρl| = 1√

K
for 1 6 l 6 K and (b) sign

(∏
ρl

) = 1 if m is even and−1 if m is odd. That

is, the generalization errorεg possesses 2
K+1

2 minima whose values are

εg = 1

2
− fK

(
1√
K

)
wherefK is given by equation (21). In figure 1(b) we present the value of the generalization
error εg for the optimal perceptron that learns from aPM. The limit of a large number of
hidden units of the generalization error is

εg = 1

2
− 1√

2

(
1√
π

)K+1

.

In the case of theAM there is only one minimum given byρl = 1/
√

K for 1 6 l 6 K

and the asymptotic value is

εg = 1

2
− A

2K

whereA = 2
π

∑
l

(l−2)!!
l!

∼= 0.76. This result reflects the fact that a fraction of the input
space for whichyAM = +1 goes to zero as 1/2K while for the SLP we have thatyP = +1
for half of the input space.

† I would like to thank the referee for pointing this out.
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5. Similarity between committee and parity machines

We now consider the case of two different2LNs with tree-like architecture. We study the
case of aPM and aCM with three hidden units. We show that they implement different sets
of Boolean functions and we find the minimal generalization error.

From equations (3) and (7) we obtain that the fraction of the input space for which a
PM and aCM disagree is

εg = 3
4 − 1

2(ε1 + ε2 + ε3) + (ε1ε2 + ε2ε3 + ε1ε3) − 2ε1ε2ε3 (22)

whereεl , l = 1, 2, 3 is the generalization error (8) of perceptrons receiving the same input.
The generalization error (22) is minimized atε1 = ε2 = ε3 = 1; ε1 = 1, ε2 = ε3 = 0
and all possible permutations, yieldingεg = 1

4. Note that there is a solution that satisfies
permutation symmetry in the sense that the overlap of three pairs of perceptrons is the same
while there are another three for this symmetry does not hold. Since the generalization error
never vanishes, aPM and aCM of a 2LN with three hidden units and tree-like architecture
will always implement different Boolean functions whatever their first layer weights are. It
is possible to show that this result is still valid for any number of hidden unitsK.

6. Conclusion

We have extended a previously proposed method [5, 6] for calculating thegeneralization
error of two two-layered networks. This technique consists basically of making a list of all
the pairs ofinternal representationsthat yield different outputs for the two networks. The
fraction of the input space that gives rise to such a pair is calculated. The sum of fractions
for all such pairs is the generalization error.

We have applied this method for the case of a single-layer perceptron, the ‘student’,
who tries to imitate a two-layered network, the ‘teacher’. We found that the generalization
error between them depends only on the overlaps of the weight vector of the perceptron
with each of the weight vectors of the two-layered network and on the correlation of each
hidden unit with the output unit.

We studied the generalization error as a function of the perceptron weights; in particular
we focused on the perceptron that minimizes the generalization error for a given two-
layered teacher network. It was found that the optimal student’s weight vector belongs to
the subspace spanned by the weight vectors of the teacher network. In the case when all the
hidden units have the same correlation with the output unit, we found that the overlap of
the weight vector of the student with each of the teacher weight vectors must be the same.

We obtained explicit expressions for the cases when the teacher is acommittee machine,
a parity machineand anand machine. We obtained that for a committee machine of any
(odd) number of hidden units there exists a perceptron which is able to give a correct answer
for almost 80% of the inputs.

The computational capabilities of the committee and parity machines of tree-like
architecture were compared. We found that they implement a disjoint set of Boolean
functions.

The results obtained in this work are also valid if we consider continuous inputs whose
componentsxi possess a symmetric density distribution around zero.
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