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Abstract. In this paper we present a method for calculatiggthe generalization erroof two-

layered networkseg is the fraction of the input space for which two networks yield different
answers, therefore it is a good index to measure the similarity between them. The method
presented here is an extension of work reported previously. It is applied here to the case of a
single-layer perceptron (which can be regarded as a particular two-layered perceptron) that tries
to imitate a two-layered network. The particular realizations of such a two-layered network that
are analysed here are the ‘parity machine’, the ‘and machine’ and the ‘committee machine’. We
have also compared the input—output mapping of a committee and a parity machine.

1. Introduction

Feedforward neural networks can be viewed as input—output devices whose parameters are
tuned to perform a given function. An index of similarity between two such mappings is
the generalization error i.e. the fraction of the input space for which the corresponding
function value is different.

The generalization erroky, as a function of the number of examples was studied in
the framework of learning theory [1]. Different asymptotic behaviours were found for the
cases in which the rule can or cannot be implemented [2]. Numerical simulations were
also employed to understand how networks generalize when they ‘try’ to implement an
unlearnable task [3].

There are many situations where it can be useful to calculate the similarity of the input—
output map of two networks. For instance, one may want to evaluate the generalization
ability of a learning algorithm. The method presented here could be applied if for a given
learning algorithm it were possible to calculate the overlap between the weights of the
‘teacher’ and ‘student’ (as in the case of [4]).

More recently a method to calculaég when the student and teacher ane-layered
perceptronshaving the same [5] and different [6] numbers of hidden units was introduced.
In this case is a function of the two network parameters. Expressionsferere provided
in the thermodynamic limit, i.e. when the number of inputs is very large.

In this work we extend the method mentioned above in two directions. First, it is
formulated in such a way that any mapping from the hidden units to the output is allowed.
Second, a series expansion that enables us to caleylaieany degree of precision replaces
the multi-dimensional Gaussian integrals, in terms of which the results were previously given
[5, 6].
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This new method is equivalent to the limit of zero temperature and infinite number of
examples in the framework of the replica calculations. Therefore this technique can be
useful to check symmetry or scaling assumptions for the order parameters. In particular,
we compare with the case of a perceptron learning from a committee machine with three
hidden units [7] and when the number of hidden units goes to infinity [8, 9].

This method is applied now to the case ofiagle-layer perceptrotrying to learn the
function realized by @wo-layered networkln most of the cases this is an unlearnable task
for the perceptron. We obtain expressions for the general case and also for some specific
realizations of the two-layered network, like tharity, and and committee machinesn
particular, we are able to find the weights of the perceptron that miniegiz€ome of our
results can be easily explained by geometrical arguments. We found that when the teacher
is a committee machine of any number of hidden units, there exists a perceptron that is able
to give the correct answer in almost 80% of the cases.

We have also compared the set of Boolean functions associated with committee and
parity machines with tree-like architecture. We found that the intersection of the set of
Boolean functions that can be implemented by a committee machine and the set of Boolean
functions that can be implemented by a parity machine is empty.

The basic definitions are given in section 2. The method for calculafjrand a brief
derivation of it is presented in section 3. In sections 4 and 5 we apply this technique to the
cases mentioned above.

2. Definitions

Throughout this paper we will be concerned with feedforward networks composed of binary
units, with N inputs and one output. Each input is described byNawector = with
components; € {—1,1}, 1 <i < N.

The simplest feedforward network is tiengle-layer perceptrorisLp) whose output is
given by:

yp (x) = sign(W - x) 1)

whereW e RV is called theweight vector W; denotes the strength of the connection of
theith input unit to the output.

We consider spherical perceptrons, iW. is normalized by requiringV - W = 1.
The sLp implements only the class of so-callédearly separablefunctions. That is, the
input—output map (1) implemented by tisep divides the input space into two regions,
corresponding to the two sides of the hyperplane that passes through the origin and is
normal toW.

Two-layered network42LN) with one additional layer of hidden units have higher
computational power than a perceptron.2iN is completely defined by the specification
of the number of hidden unitsk; the weight vectord¥; € RV, 1 <[ < K and by the
Boolean function that maps the hidden layer to the output. Each hidden unit is connected
to the inputs by its weight vectdW;, performing the mapping

o; = sign(W; - x) for 1<I<K.

The hidden units can be regarded as outputs of a single-layer perceptron. The state
taken by the hidden layer in response to an input is callediritexnal representation
(IR) corresponding to this input. The output of the network is determined byrthe

yan(x) = B (o)
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whereB: {—1,1}¥ — {—1, 1} denotes the Boolean function that maps the hidden layer
to the output unit. For instance thparity machine(Pm) is a2LN where the mapping from
the hidden units to the output is

K
B (o) =l_[az.
=1

Another 2LN that was widely studied is theommittee machirje(cm) whose output is
determined by the votes of each of its hidden units; that is, the Boolean function is
implemented by &LP whose weight vector components have the same (positive) value,

K
B(o) = sign(z 01).

=1
The third2LN that we consider in this work is trend machingam). In this case the output
is +1 if and only if all the hidden units are equal #6l, otherwise the output is 1.
A particular case of aLN is theruler machine(Rm) where the output is determined by
a singlehidden unit. Clearly its computational capabilities are exactly the same asrhe
The Boolean functionyy : {—1, 1}V — {—1, 1} is theinput—output mapf the 2LN.

3. The generalization error

The generalization erroeg, is an index of similarity of the input—output map implemented
by two networks.¢q is the fraction of the input space for which two networks give different
outputs.

Let us now consider twaLNs, N1 and A2, both with N inputs and, respectivelyk
and K hidden units. Usev.” and W,(l.z) to denote the weights of; and A/ respectively.
Similarly, useB; and B, with the same convention.

The generalization error between them is given by

€g N1, N2) = ((O (—y1y2))) (2)
where ({--+)) = Zi,v D= 11+ 2m=_11--- indicates the average over input space, and
® (-) denotes the Heaviside step functia.(NV1, N2) can be expressed in terms of tie
as follows:

K1 2K

€ NLN2) =) > O(=Bi (") B2 (0"2)) P (0™, 07?) 3

n1=1pp=1
where{o"};., <. i the set of possibl& for K, hidden unitsg = 1, 2. P (o', 0/?) is
the fraction of input space for which the tweans get thelrRs o#* and o#2 simultaneously
(i.e. in response to the same input):

K K3
P (o, o) = <<]’[ SIUARECDN S EIUZE mo,“2)>> 4)
=1 m=1

P (o"t, o*2) can be interpreted as the probability of getting tke o/t and o2 if an
unknown vectore is fed as the input of\; and N2, respectively.

Introducing the integral expression of tiiefunction [5, 6] in equation (4), we obtain
at leading order in AN

® @ 1 oo K1+K> 1 K1+K> .
i (U 7 ) - (2m)K1+K2 det(R) /0 111 dh eXp[_Z m;1 i (R )'"” h":| )

T Also calledmajority machine.
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whereR is the (symmetric) correlation matrix given by
Rll R12
the elements oR* (a, b = 1, 2) are the correlations between the weight vectora/pfand

Ny
RI”,S = Ul(a)VVl(a) W 5B for 1<I<K, 1<m <K, a,b=12.

From expressions (3), (4) and (5) we observe that irtleemodynamic limi{N — oo) the

generalization error is determined by the overlapg,}f;;’iz and the Boolean functionB;

and B,. The remaining details of the networks are corrections of oggjeo this result.
Equations (3) and (5) provide a constructive method to evaluate the generalization

function for any pair obLNs. The generalization error is simply the sum of the probabilities

P (o', o#2) over the pairgo*t, o+2) for which N7 and N5 yield different answers. In the

case thatV; and N, are2LNs with tree-like architecture, a simple expression fofo*, o+2)

is obtained, because by definition the elements of the correlation matrix (6) are of the form

Rlan’; = SimSab + Oim (1 — 8ap) vvl(l) . VVI(Z) for 1 <Im<K ab=12
where K is the number of hidden units. Integrating (5) we obtain
l K
P, 0" = o H [1+0/%0/ (1 - 2¢))] @)
with
1
€ = — arccosk}?. (8)
T

The factorization of (5) is a consequence of the fact that the input seen by each hidden
unit of the2Lp is decoupled from the others, hence each hidden unit acts as an independent
perceptron.¢; is no more than the generalization error of ttie hidden unit of\; with
respect to théth hidden unit of\5.

In general, when the integration is not possible, the expressiorP f@r'1, o#2) can
be evaluated to any degree of precision using Kendall's expansion [10,11]. This is an
expansion for the integral (5) in powers of the matrix elements |R;,,| < 1, defined as
follows. Assign an integen;,, > 0 to every pair of indices X I, m < K; + K». Denote
by {n} a set of these integers. Further, denote

-1 Ki+K>
n = E Nl + E Rim
m=1 m=I[+1

©)

Ki+K>
n = Z ny.
=1
Kendall's expansion is a sum over all possible defs

Ry | 2
Povo) =3 0" [T " | T] G- (10)

(n) l<m 'lm: =1
The first product is over all pairs m with I < m; the argument of the second product
is given by

1 if n=0
G, = % ifn=2m+1 (m=012..) (11)
JT

0 fn=2m m=123,..)
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where(2m — D!t =[]/, (2 — 1).

4. A perceptron learning from a two-layered network

In this section we use the proposed method for the case where one of the networks is a
single-layer perceptron with weight vect¥p and the second @N of K hidden units. We
find expressions for a generalN as well as for some particular realizations of it like the
PM, AM andcCMm.

In order to simplify the problem we assume that the first layer weights otitkeare
uncorrelated [8, 9], i.eW;- W,, = §,,,. This can be considered a ‘typical case’ in the sense
that there is a big probability of getting (almost) orthogonal weight vectors if they are
chosen at random in the largé limit. The 2LNs with tree-like architecture, also known as
non-overlapping receptive fieldsN, are a particular case whose weights satisfy exactly the
orthonormal condition.

The overlap ofW; with the perceptron weight vector is designajed

o =W;-Wp.
Denoting byo thelr of the2LN and byyp the output of the perceptron, and introducing
2L = YPOip
the correlation matrix (6) takes the form
1 0 O 0 2z |
0O 1 O 0 =z
0O 0 1 0 z3
R=1| : + = -0 (12)
0 0 0 - --- 1 zg
L Zl Z2 Z3 “ e “ . ZK 1

We have to take into account only the non-diagonal elements that are different from
zero in expansion (10). Therefore the $e} is composed, in this case, only by elements
of the formn; g1, i.e.

{n} = {m;}<, with  m; =n; x11.
Equation (9) becomes
np= K .
Yogmy if I=K+1

K
n:2§ m
=1

and expansion (10) can be expressed as

o0 K my
M1 M2 4 G’"’
P (o™, oM?) = Gsm, o
miy,..., }’VLK:O =1 ml.

Only terms with an odd number af raised to an odd power can appear in this expansion
becauses, # 0 only if n is odd or zero. Hence expansion (10) can be written as

K
25 P (yp, U“)=%+Zf1(21)+ Z f3 (21 2ty 2t) + - + Z T (2 oo 2
=1

hi<lp<l3 Iy <--<lgs
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where

1/-2\" & e M
. o) = — [ 2N v om—1)n [T &2
Jons1 (@1 Zoms1) n<n> X > ( 2 uit ) [1 (2 + 1!

~~~~~ [2m+1:O i=1
with K* = K if K is odd andK* = K — 1 if K is even. In particular, it can be shown that
f1(z) is just the series expansion éfarcsir(z). Using

2m+1

Som+1 (ypﬁzlpzl, cees yPGlz,,H,Olz,,H) =yp |: H Gz,-i| Som+1 (,011, ceey ,Ozz,m)
i1

the generalization error becomes

K
7 - chlfl (o) — Z Cratots /3 (01 PLs p15) =+

=1 li<ly<ls

R Z C[l___[KfK* (pllv"-vlolk*) (13)

hi<..<lgx

€

whereC,, ;, is the correlation of hidden units. ../, with the output

1 2K m
Chty = o 2; B (o) 1‘! o (14)
n= i=

and{a”}ff:l is the set of allrs for K hidden units.

It is interesting to observe that (13) is basically a sum of products, each of the form
Cy,..1, fm Where the functiong,, depend only on theLN weight vectors and the perceptron
weight vector, while the correlation coefficient, are completely determined by the
Boolean function that maps the hidden layer to the output. In some cases, as we will
see below, it is possible to draw many conclusions from the correlation coefficients without
calculating thef,, explicitly.

In many cases all hidden units play equivalent roles in the hidden layer to output map
B (like the Pm, AM andcwm). Hence the correlation depends only on the number of hidden
units and not on the particular ones chosen. This motivates the following definition. We
say that @LN is symmetridf

Cll...lm = CA‘m
forallly <--- <, withm=1,3,..., K*.
Let us now evaluate (14) for sonzeN. In the case of thewm it is easy to show that
- 1 if =K
G = { 0 otherwise (15)

Therefore the generalization error of any perceptron that tries to imitate @ an even

number of hidden units is alwaylzsbecause only the correlations of odd numbers of hidden

units enter in (13). This result was expected because for emerwith an even number

of hidden units we have thatpy () = ypm (—x) while for every sLP we know that

yp(x) = —yp(—x) for any inputx. For aPm with an odd number of hidden units it is

necessary to calculate only one term in the expansion (13), i.e. it is of thesgoﬁmg — fx.
Evaluation of (14) in the case of thev is also immediate:
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In the case of th&m we get, after some algebra and assuming fas odd, that

A D" & W 2m+1 - K—2m—1

C2m+1—ﬁn:0 =D ntmal u;n w—m+ K51 : (16)
When the2LN is a ruler machine, we can assume without loss of generality that its

output is determined by the hidden unit 1. In this case we have that all the correlation

coefficients (14) vanish excegh, = 1. Therefore (13) yieldsy = %arccospl), which is

the well known expression for the generalization error betweenstwe

4.1. The optimal perceptron

We turn now to address the issue of finding the minimal generalization error ifrethat
tries to imitate a symmetrigLN. We consider first the general case and then we analyse the
cases where theLN is apPM, CM and AM.
We have to minimize, with respect to{p;}X ; under the constraint ~, p? < 1. This
can be done by minimizing

K
h=€g+/\<1—pf—zpf)
=1

with respect tof{p;}f ;; p1, the projection ofi¥p on the subspace orthonormal to then
weight vectors and the Lagrange multiplier The conditiondz/dp, = 0 implies that

oL = 0, which means that the weight vector of the optimal perceptron must be contained
in the subspace spanned By}~ ;; i.e.

K
Y =1 (17)
=1

Finally, taking the derivative with respect {p leads to

~ afm B
;Cm 2 o (s -+ p1,) = 201 for 1

N

I < K*. (18)
Equations (17) and (18) are valid for any set of overlaps,except for the cases where

the perceptron coincides with one of the first layer perceptrons of the teacher, because the
norm of the gradient oy diverges. Thus, in order to obtain the minimumegf not only

musteq be evaluated at all solutions of (17) and (18) but also at these points. In the case
where thezLN is acm, PM andAM the minima can be found explicitly.

4.1.1. Committee machinelLet consider the particular realization of2aN, where the
mapping from the hidden layer of units to the output unit is made liyva Since the
correlationsC,, have the property that sigfif, f.(os,. - - - » p1,)] = sign[[ 17—, pi, ] we have
that the overlaps that lead to the minimum of the generalization egrotust be positive.
Moreover, if we considebC,, f,,/d0; as a function ofp; we observe that it is an even
function and it is a monotonic function fgy > 0. Hence the right-hand side of equation (18)
is an even function op; and monotonic increasing fgr > 0. On the other hand the left-
hand side of equation (18) is a monotonic odd functionpof Therefore each of th&
equations of (18) with = 1, ..., K possesses at most two solutions. By the symmetry of
the problem we have that (f,oI, ...,p;<) is a solution, then any permutation of it will still
be a solution. So, the solutions of the set of equations (18) have the particularity that each
of the overlapsp;, can take at most two values, say> 0 andg > 0. The constraint (17)
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Figure 1. Minimal generalization error of a perceptron that tries to imitate different two-layered
networks. The minimabeneralization erroy g is presented for the following realizations of
the 2LN; the committee machin@ (a), the and machindn (b), and theparity machinein (c).

In (a) and(c) we consider only odd numbers of hidden uniks, The open circles indicate the
value ofeg for the differentk. The dotted lines indicate the value of |im eg“”(K) in each
case.

imposes a new restriction; the numbercfhould be fixed. In addition, it can be easily
checked that

1
o= —— for 1<I<K
1 \/E
satisfies equations (17) and (18) and therefore the solution is unique. Thus we have found
that the optimal perceptron is the one that is equidistant from all the perceptrons composing
the first layer weights of thewm:

€g = % — Z élfl (19)
1=1,3,....,K*
where
1 m 2 M 2m+1
fana = e [ } Z“ ) Z [Tiesnes+n? o)
(si 2m+1 i=1
Z“A

and the correlationg; are given by (16). The minimal generalization error obtained for
different values ofK is presented in figure &j.

Let us now consider the case of a large number of hidden units; we assume that
1« K <« N. Expanding expression (20) at the leading term j/K, we obtain

_1ym 2 ™
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The correlation coefficients (16) of thav in the largeK limit become

A / ="

Inserting the last two equations into (19) and using Stirling’s approximation we get that the
minimal generalization error for the optimal perceptron that learns froom af infinite

hidden units is
Z <2n) (@m)™ arCCOS( ) = 0.206.
Vi (2n+1) V 2

This value is the sanjeas that of the minimum generalization error obtained in [8, 9] for a
cM machine learning from anothe@m in the permutation symmetric phase where the
effectively behaves as a perceptron. Since the treatment of this work is equivalent to the
case of an infinite number of examples and zero temperature of [8, 9], we conclude that in
the limit of a high number of examples, there is no permutation symmetry breaking. In
addition, for the case of a perceptron learning frooveof three hidden units, our result not
only agrees with the limit of a high number of examples obtained in [7], but also justifies
the permutation symmetry of the order parameter assumed in that work.

4.1.2. And machine and parity machindn the case when the teacher is a parity machine
of odd number of hidden units the generalization (13) error is reduced to only two
terms; g = % — fx(p1, p2, ..., px) because there is only one non-vanishing correlation
coefficient (15). Using similar arguments to those used in the previous section we obtain
that the optimal perceptron that learns frorena of 2m + 1 hidden units must satisfyaj

loi| = \/if for 1 <1< K and b) sign([Te) = 1 if m is even and-1 if m is odd. That

. . . K41 ..
is, the generalization errag, possesses 2 minima whose values are

1 7 1
Eg — é K ﬁ
where fx is given by equation (21). In figureld(we present the value of the generalization

error 4 for the optimal perceptron that learns fronPe. The limit of a large number of
hidden units of the generalization error is

1 1 1\ K+
g==-——|—7= .
T2 2 <ﬁ )
In the case of them there is only one minimum given by = 1/vK for 1<1 < K
and the asymptotic value is

1 A
9= 57 ok

whereA = 2y, 22" = 0.76. This result reflects the fact that a fraction of the input
space for whichyay = +1 goes to zero as/2X while for the sLp we have thatyp = +1
for half of the input space.

1 1 would like to thank the referee for pointing this out.
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5. Similarity between committee and parity machines

We now consider the case of two differentns with tree-like architecture. We study the
case of &M and acwm with three hidden units. We show that they implement different sets
of Boolean functions and we find the minimal generalization error.

From equations (3) and (7) we obtain that the fraction of the input space for which a
PM and acwm disagree is

€g= 3 — (€14 €2+ €3) + (€162 + €263 + €163) — 2€162€3 (22)

wheree;, [ = 1, 2, 3 is the generalization error (8) of perceptrons receiving the same input.
The generalization error (22) is minimized @t = e; = e3 = 1, €1 = 1, €2 = €3 =0

and all possible permutations, yieldirg = 211. Note that there is a solution that satisfies
permutation symmetry in the sense that the overlap of three pairs of perceptrons is the same
while there are another three for this symmetry does not hold. Since the generalization error
never vanishes, am and acm of a 2LN with three hidden units and tree-like architecture

will always implement different Boolean functions whatever their first layer weights are. It

is possible to show that this result is still valid for any number of hidden ufiits

6. Conclusion

We have extended a previously proposed method [5, 6] for calculatingeheralization

error of two two-layered networks. This technique consists basically of making a list of all
the pairs ofinternal representationghat yield different outputs for the two networks. The
fraction of the input space that gives rise to such a pair is calculated. The sum of fractions
for all such pairs is the generalization error.

We have applied this method for the case of a single-layer perceptron, the ‘student’,
who tries to imitate a two-layered network, the ‘teacher’. We found that the generalization
error between them depends only on the overlaps of the weight vector of the perceptron
with each of the weight vectors of the two-layered network and on the correlation of each
hidden unit with the output unit.

We studied the generalization error as a function of the perceptron weights; in particular
we focused on the perceptron that minimizes the generalization error for a given two-
layered teacher network. It was found that the optimal student’'s weight vector belongs to
the subspace spanned by the weight vectors of the teacher network. In the case when all the
hidden units have the same correlation with the output unit, we found that the overlap of
the weight vector of the student with each of the teacher weight vectors must be the same.

We obtained explicit expressions for the cases when the teachepismittee machine
a parity machineand anand machine We obtained that for a committee machine of any
(odd) number of hidden units there exists a perceptron which is able to give a correct answer
for alImost 80% of the inputs.

The computational capabilities of the committee and parity machines of tree-like
architecture were compared. We found that they implement a disjoint set of Boolean
functions.

The results obtained in this work are also valid if we consider continuous inputs whose
components:; possess a symmetric density distribution around zero.
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